
I bring nearly a decade of teaching experience to a computer science classroom. For 
six years, I taught mathematics and computer science at the K-12 level, specializing in 6th 
grade Pre-Algebra, 9th grade Algebra II, and 12th grade AP Computer Science A. During my 
time at Georgia Tech, I served as a teaching assistant for a total of 8 semesters in a variety 
of topics: Graduate Introduction to Operating Systems (CS6200, three semesters), High-
Performance Computer Architecture (CS6290, three semesters), and Undergraduate 
Introduction to Artificial Intelligence (CS3600, two semesters). As a teaching assistant, I 
tutored students 1-on-1 and in small groups, designed assessments, ran small group 
activities, and graded student work. I also completed my Tech to Teaching Capstone by 
serving as Instructor of Record for CS3600 Introduction to Artificial Intelligence, creating 
my own curriculum and publishing my activities in EAAI’26. I am a MathStreamer for 
Carnegie Learning, creating engaging instructional videos for K12 mathematics lessons. My 
research concentration in AI for Education was initially sparked by my love for teaching, but 
as I explore how representation can be used to personalize the student experience in 
technology, I find new ways to express and engage my students in the classroom. 

For lifelong success as a computer scientist or software engineer, today’s students will 
need to learn new languages on a fly, have a solid intuition for how computer algorithms 
work, and have strong independent debugging skills in order to design and build any piece 
of software. My pedagogy is guided by constructionism, the theory that learning happens 
by doing. I believe that the most long-term learning comes from discovering concepts for 
yourself. As a computer science instructor, my primary goal is to give students the 
experiences and opportunities they need to discover course concepts. I never want to 
simply tell my students something they could experience for themselves. I want to create 
opportunities for my students to try, experiment, fail, succeed, and learn. As I plan my 
instruction, I’m considering how to chunk the content, how to give my students 
opportunities to practice, when to insert formative assessment, how the students are going 
to interact with each other and with me, and how I will be measuring the success of my 
lesson. In this way, designing lessons for 6th graders is not so di[erent from designing 
lessons for undergraduates, and I can apply my experience in the K-12 classroom to higher 
education. In both environments, I try to build a classroom where students are confident in 
their ability to learn, where the learning activities help my students gain an intuition for how 
computers make decisions and teach them expert debugging skills. 

For students to persist in a subject, they need to see themselves as capable of 
succeeding in it (Steele, 1997, A Threat in the Air). This self-identification comes when 
students believe they can succeed and gain confidence in their abilities, making them 
more resilient to setbacks and more likely to continue learning. Especially in subjects like 
computer science and artificial intelligence, students can feel apprehensive about learning 



a highly technical subject that is often preceded by complicated mathematics. My goal is 
to create a safe, supportive environment where students feel free to try new things without 
fear of failure, and a space where they can see themselves having a future in the field. To 
achieve this, I design courses that provide accessible entry points to technical material, 
applying Universal Design for Learning principles and eliminating hidden curriculum 
wherever possible. I use physical analogies and games to make technical content easy and 
intuitive, before building a more precise, technical understanding. I try to leverage my 
student’s current knowledge and expertise to build a deeper understanding of challenging 
content. I aim to give students early ‘wins’ so they see success is attainable, even if they 
initially do not see themselves as a computer person. My students have appreciated this 
approach, saying “I truly believe she is the best professor ever. I’ve taken this class before 
[with a] di;erent professor and the knowledge felt so unattainable, and I just couldn’t 
follow. I thought it was me and that I was stupid, but here I am taking it again and it’s all just 
so simple”. Another student shared, “She explains concepts in a way a beginner could 
understand, so I never feel like I’m left behind”, and a third reflected, “I really appreciate 
how she does around to everyone and makes sure everyone understands the concept 
individually as well, so no one feels left behind before class is over.” Outside observers 
remarked that “your passion for the material and the relationship you have with your 
students is the most e;ective aspect of your teaching”. These comments reinforce my 
belief that classroom climate and individualized attention matter deeply, shaping how 
students see themselves and their potential in the discipline. 

What I want students to take away from my classes is an intuitive understanding of 
why things work the way they do. With this intuition, students can more easily 
reconstruct the technical and mathematical details both during the course and later when 
applying the material in their career. When intuition comes first, the technical details 
become more meaningful. Most artificial intelligence methods are based on human 
intelligence, and students are already experts in their own decision-making. I use physical 
manipulatives, metaphors, and games to put students in a situation where they need to 
make an optimal decision under stochasticity or uncertainty, such as card or dice games. 
Through these activities, the world dynamics become clear and students can reason 
concretely, even when outcomes are uncertain. When we follow each activity up with a 
mathematical formalization of how AI would represent and process the problem, students 
can see how and why we formalize phenomena in particular ways, instead of seeing 
arbitrary definitions before grasping the big picture. Students have expressed how this 
focus on intuition helps them bridge the gap between theory and practice. One shared “I 
really enjoy the activities we do in class. I think they’ve helped solidify my understanding of 
a lot of concepts that seemed very abstract. Tracing through small examples of these 



algorithms running on the board makes it easier to visualize and extrapolate them.” Another 
noted “The simulated demonstration as well as the hands-on activity made the concepts 
less abstract, allowing me to learn them tangibly in a way.” A third student said that “the 
physical activities were really helpful to me since it let me physically model the actions an 
agent would take and learn about how it would practically work over just learning theory”. 
Building on my student’s ability to reason about an activity makes the transition to abstract 
theory and technical details easier, and they now have a lived experience to tap into when 
using each concept in the future. 

Independent problem-solving is a skill that students will have to use in courses 
outside mine, and for the rest of their technical careers. As an instructor, it can be so 
easy to pinpoint what a student is doing wrong from common bug rules, and the fastest 
way to solve student problems is to tell them what is wrong in their work. But having a 
student inspect their own work more thoroughly is a more valuable learning experience. 
Instead of telling students what is wrong, giving them hints about what to inspect, how to 
use a debugger, and encouraging them to think about what data structure they should 
investigate at what stages takes longer to solve their problems, but students will internalize 
these informal lessons. Through debugging together, students learn how to self-verify the 
correctness of their work, and how to fix their own problems independently. One student 
said “She had super unique but e;ective ideas for debugging. She was genuinely interested 
in helping you solve your issue and not just giving you a solution to try. I have never met a TA 
this invested in the students and this good at what they do!” This kind of feedback 
reassures me that students are not only learning to fix immediate problems but are also 
developing the mindset and skills to diagnose and solve their own problems independently. 

While course content is important, I also want to prepare my students for a future of 
lifelong learning. My classroom prioritizes student confidence and well-being. I want to 
give my students the tools they need for success beyond my course, like computing 
intuition and independent debugging skills. I would enjoy teaching introductory classes like 
Data Structures, Intro to AI/ML, or Algorithms. I love being a student’s first introduction 
to a subject, so I can show them how interesting this content can be and show them how 
they can see themselves as a computer scientist, an AI engineer, or an application 
developer. I would enjoy teaching cross-over classes like Math for AI or Educational 
Technology. Finding overlap between two topics makes content more meaningful and 
showing students how math is found in CS or how learning theories are evident in Ed Tech 
can help them see there’s more to pursing a subject than pure CS theory. I would also enjoy 
going deep in a specific subject, like High Performance Computing Algorithms (applying 
parallelism to solve problems e[iciently across multiple cores) or Computational Models 
of Learning (Bayesian Knowledge Tracing, Performance Factors Analysis, and AI that 



models human cognition). You’ll find that I am an experienced educator with nearly a 
decade of teaching experience, enthusiastic about making higher education accessible. 

 


