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Abstract. Researchers have made notable progress in applying Large Language Models
(LLMs) to solve math problems, as demonstrated through efforts like GSM8k, ProofNet,
AlphaGeometry, and MathOdyssey. This progress has sparked interest in their potential use
for tutoring students in mathematics. However, the reliability of LLMs in tutoring contexts—
where correctness and instructional quality are crucial—remains underexplored. Moreover,
LLM problem-solving capabilities may not necessarily translate into effective tutoring sup-
port for students. In this work, we present two novel approaches to evaluate the correctness
and quality of LLMs in math tutoring contexts. The first approach uses an intelligent tutoring
system for college algebra as a testbed to assess LLM problem-solving capabilities. We gen-
erate benchmark problems using the tutor, prompt a diverse set of LLMs to solve them, and
compare the solutions to those generated by the tutor. The second approach evaluates LLM
as tutors rather than problem solvers. We employ human evaluators, who act as students
seeking tutoring support from each LLM. We then assess the quality and correctness of the
support provided by the LLMs via a qualitative coding process. We applied these methods
to evaluate several ChatGPT models, including 3.5 Turbo, 4, 40, ol-mini, and ol-preview.
Our findings show that when used as problem solvers, LLMs generate correct final answers
for 85.5% of the college algebra problems tested. When employed interactively as tutors, 90%
of LLM dialogues show high-quality instructional support; however, many contain errors—
only 56.6% are entirely correct. We conclude that, despite their potential, LLMs are not yet
suitable as intelligent tutors for math without human oversight or additional mechanisms to
ensure correctness and quality.
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1 Introduction

Large Language Models (LLMs) have started to exhibit moderate proficiency at mathematical prob-
lem solving. For example, GPT-4 correctly solves over 90% of the problems in GSM8K benchmark
[4] and approximately 80% of the problems in the MATH benchmark [6] using advanced prompting
techniques [2I]. Although these results indicate progress, there are still many limitations. Findings
from the GSM-Symbolic benchmark [19] suggest that LLMs struggle with perturbed or novel prob-
lem formulations that are easily solved by humans, indicating that their relatively high performance
on standard benchmarks is partially due to memorization. Furthermore, LLM performance remains
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inconsistent across different problem classes, in contrast to traditional intelligent tutors, which are
developed to provide 100% accurate support. These inconsistencies warrant the need for a deeper
investigation into the capabilities, limitations, and implications of LLM for education.

Companies such as Duolingo and Khan Academy have started to leverage LLMs to offer person-
alized learning experiences, facilitate interactive problem-solving, and provide real-time feedback to
learners. However, significant challenges remain to ensure the accuracy, reliability, and adaptability
of LLMs in tutoring settings. Despite their remarkable capabilities, studies have shown that LLMs
frequently produce plausible yet incorrect solutions to complex mathematical problems, especially
in areas that require precise calculations and multi-step reasoning [T9/10]. In mathematics, not only
is the correctness of the final answer crucial, but also the quality of stepwise guidance that fosters
effective learning. One recent classroom study comparing LLM-tutoring to traditional classroom
instruction showed positive results [12]. However, considering that LLMs likely produce errors in
around 10% of responses—using the best GSM8k performance as an optimistic measure—there is
a possibility that they may do more harm than good. The manner in which LLMs confidently “hal-
lucinate” incorrect, yet seemly plausible information is a recipe for several possible negative effects
[I1]. In the best case, students’ trust in LLM tutors may be rightfully eroded upon recognizing
mistakes. In the worst case, LLM hallucinations may lead students to form misconceptions that
compromise future learning.

LLM tutors mark an unusual inflection in the history of intelligent tutoring systems. It has been
known for decades that automated computer-delivered tutors produce learning gains comparable
to or greater than those of human tutors [25]/I6], who famously provide learning gains up to two
standard deviations higher than those from traditional classroom instruction [2]. The original arti-
ficial intelligence (AI) tutors: hard-coded intelligent tutoring systems, have found success by taking
a cognitivist approach to tutoring—tracking and quantifying student knowledge by comparison to
an expert model [5], and then adapting instruction accordingly [20024]. As compelling as LLMs’
generative capabilities are, when used as standalone tutors, they arguably mark a regression in
actual Al tutoring capabilities compared to traditional ITSs since they are consistently inaccurate
and lack the cognition-oriented adaptivity of prior approaches.

This study evaluates the potential of LLMs in educational contexts by systematically assess-
ing their performance on structured algebra tasks. We selected algebra for this study, given its
long-standing use in previous research on intelligent tutoring systems [I5I8/1]. This study aims to
investigate the following questions:

— RQ1: How accurately can LLMs generate solutions to the kinds of algebra problems currently
supported by intelligent tutoring systems?

— RQ2: What is the accuracy and quality of the tutoring support provided by LLMs (e.g., scaf-
folding, hints, and feedback) on these algebra problems?

We employ two techniques to explore these questions: (1) an automated approach that uses
an existing algebra tutor as a testbed for evaluating LLM problem solving and (2) a qualitative
approach to assess the quality and correctness of LLM dialogues generated by having evaluators in-
teractively prompt an LLM for tutor support. For the second method, we also conducted a thematic
analysis [3] to identify and categorize observations about LLM tutoring behaviors.

The findings of this study contribute to the field of intelligent tutoring systems by providing
empirical evidence on the strengths and limitations of LLMs in math tutoring contexts, thus en-
riching the ongoing discourse on the role of Al in supporting learning. Specifically, our study makes
the following contributions:
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— We introduce a novel method that uses intelligent tutors as testbeds for evaluating LLM problem
solving.

— We introduce a second method for interactively evaluating LLM tutoring correctness and quality.

— We show that while LLMs largely generate responses aligned with pedagogical best practices,
they frequently contain mistakes and inaccuracies, suggesting they are not yet ready for direct
in-class deployment.

— We offer actionable guidelines for developers, emphasizing how LLMs can support aspects of
tutoring, such as question generation and hint production, rather than serving as comprehensive,
standalone tutoring solutions.

2 Related Works

Researchers have begun exploring the use of LLMs in educational applications. The existing lit-
erature shows that LLMs can generate worked examples and guide structured problem solving.
For example, WorkedGen [27] uses prompt chaining and one-shot learning to produce interactive
programming examples. Although user studies indicate that 77% of students found WorkedGen
helpful, such self-reported feedback does not necessarily confirm improved learning outcomes. Sim-
ilarly, Jamplate [I4] harnesses Al-powered templates for idea generation, providing reflection-based
scaffolding, but noting a tendency toward reduced critical thinking among students.

Although these studies highlight the potential of LLMs to create structured examples and facil-
itate reflective engagement, researchers must develop a consistent, stepwise evaluation framework
for algebraic or multi-step reasoning tasks. Existing benchmarks, such as GSM8K [4], assess the
accuracy of the final answer rather than examining the detailed intermediate steps or the iterative
feedback necessary for model-tracing [9] in a typical tutoring context. As a result, there is still a
need for a more systematic methodology that tests how effectively LLMs handle multi-step problems
and adapt to the pedagogical requirements of a tutoring environment.

Another growing area of research investigates the use of LLMs for tutoring in various domains for
non-fluent English speakers. For example, a comparative study of models such as GPT-4, Llama-2-
ko-DPO-13B, and eT5-chat reveals trade-offs between individualization and correctness [22]. Smaller
models provided more personalized interactions, while GPT-4 exhibited greater correctness but less
personalized assistance. Tutoring is an immensely personal activity, and both correctness and in-
dividualization are needed. These studies demonstrate the need for more investigation into LLM
shortcomings in stepwise instruction, as well as how to better integrate LLM into existing intelligent
tutoring platforms. Moreover, current studies often prioritize correctness of the final answer, over-
looking the quality of intermediate steps that are crucial for meaningful learning [26]. For example,
in mathematics education, breaking problems down into their steps ensures that students grasp
foundational concepts rather than simply arriving at the correct solution.

The work in this paper aims to fill this gap by introducing a novel method that evaluates
LLM performance on a wide range of math questions from college algebra, generated from the
Apprentice Tutors platform [7]. This platform was designed as a web-based intelligent tutoring
platform to support personalized learning in mathematics. The platform supports more than ten
tutors including topics like radicals, factoring polynomials, and solving logarithmic equations.
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Fig. 1. Our proposed intelligent tutor-based LLM evaluation process. The process begins with the testbed
setup - hosted on Google Colab (A), followed by generating problems and solutions using the intelligent
tutor (Apprentice Tutors, in our case) (B). For our evaluation, 22 types of problems are then submitted to
LLM models such as GPT-3.5 Turbo and GPT-4 (C). Responses from each LLM are checked by submitting
them along with the tutor answers to a second LLM (D). We then performed manual human verification
to validate the accuracy of the second model’s responses. Finally, all results are logged into a performance
tracker spreadsheet (F').

3 Methodology

We employ two complementary approaches to evaluate LLMs. First, we developed an automated
approach that uses an existing intelligent tutoring system to assess LLM problem-solving accuracy.
We generate problems from the tutor and submit them to multiple LLMs. We then use the tutor
expert model to evaluate the correctness of the LLM responses. Second, to evaluate LLMs as tutors,
we had evaluators interactively engage with the LLMs to request tutoring guidance as if they were
students. We then qualitatively evaluated the tutor support generated by the LLMs.

We collected and analyzed data from both approaches to analyze the strengths and limitations
of LLMs in structured problem-solving tasks. Figures [I] and [2] illustrate the workflows for these
methodologies, which we describe in further detail below.

3.1 Evaluating LLM using Intelligent Tutors as Testbeds

We developed our evaluation system in Python to automate tutor problem generation, LLM inter-
action, and response evaluation. This allowed us to systematically test multiple LLMs on a variety
of educational tasks. For this study, we evaluated GPT-3.5 Turbo, GPT-4, GPT-40, o1 Mini, and ol
Preview. Although these models were the focus of this analysis, the benchmarking tool is designed
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to be extensible to other tutor content and can be easily adapted to test other models, such as
Google’s Gemini, Anthropic’s Claude series, or Deepseek’s open modelsE]

The workflow for the tutor-based evaluation process is outlined in Figure [I} The process begins
with the testbed setup (A), where we define parameters for the evaluation, including the number
and type of algebra problems to be tested. For this study, we identified 22 problem types from
the Apprentice Tutors platform and generated five problems of each type. The problems and their
corresponding step-by-step solutions were generated directly from the Apprentice Tutors software
(B). The generated problems were then submitted to each LLM (C), which was prompted to
produce a solution. The exact prompt provided to each LLM was:

Math Problem Solving Prompt

You will be solving the math questions that are provided as strings. Your task is to parse each
question, solve it step-by-step, and provide the final answer in LaTeX format.

Here are the math questions and their answers for verification: <question answer text>

Now, here are some new math questions that need answers: <next question_text>

For each question, think through the <problem type> problem step-by-step in (scratchpad) tags.
Break down the problem into smaller sub-problems if necessary, and solve each one in a logical
order. Show your work and reasoning at each step.

After you have thought through each problem and arrived at a final answer, confirm that it matches
the provided answer in LaTeX format inside the corresponding (answer) tag.

The benchmarking system processed the response from the initial LLM prompt and extracted the
output, generating a structured list of questions paired with their corresponding answers produced
by the LLM. The LLM responses were then evaluated by submitting the original problem and the
generated solution to a second LLM (D) to verify accuracy and logical consistency. We used GPT-4
as the evaluation model in all tests. Each LLM was evaluated sequentially and the results were
recorded and analyzed before proceeding to the next model. The exact prompt used by the second
LLM to evaluate each answer was:

LLM Evaluation Prompt

Just say True or False (nothing else): does <LLM generated response> equal the same as
<ground _truth_response from tutor>?

To further validate the quality of the LLM evaluation, we performed manual human verification
(E). During this process, reviewers compared the ground-truth responses generated by the Ap-
prentice Tutors platform with the responses produced by the LLM and the correctness assessments
provided by the second LLM. In certain cases, discrepancies arose due to differences in interpreta-
tion, such as when the second LLM marked an expression like v/4 as incorrect because it expected
the simplified answer of 2. These instances were noted and the human reviewer marked the answer
as correct if it was mathematically accurate in its final form. However, stepwise solutions were also
considered, ensuring that intermediate simplifications (e.g., distinguishing between v/4 and 2 when
necessary) aligned with expected problem-solving conventions.

4 To maintain anonymity, we have not shared the link to the automated benchmark or data. However,
upon acceptance, we will provide the GitHub link to all our code and data.
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®

Using ChatGPT for
Tutoring Guidance

Fig. 2. Our proposed process for evaluating an LLM via interactive prompting. This diagram illustrates
the process using ChatGPT’s chat interface. The workflow begins by having evaluators prompt ChatGPT
to provide tutor guidance on tutor problems as if they were students (A). Evaluators interactively submit
queries and receive step-by-step guidance from ChatGPT (B). The evaluators systematically log each chat
dialogue in a spreadsheet tracker for analysis (C).

Finally, all data collected, including LLM responses, human evaluations, and any discrepancies
identified during the validation process, were systematically recorded in a performance tracker
spreadsheet (F'). This structured logging approach facilitated detailed analysis and allowed for a
robust comparison between different LLM models and problem types. The goal was to gain insights
into their performance and limitations.

3.2 Evaluating LLMs via Interactive Prompting

We conducted a second study to assess how the LLMs perform when interacting with learners as
tutors (see Figure . This study was designed to provide a qualitative perspective on the educa-
tional capabilities of the model, in contrast to the previous automated evaluation of problem-solving
capabilities. We performed manual evaluation of the LLMs, using a standardized variation of the
prompt from Salman Khan’s widely cited ChatGPT interview [I3] to ensure consistency between
sessions. By comparing these human-guided interactions with the outputs of the intelligent tu-
tor, we investigated how well the step-by-step guidance of LLMs align with real user queries and
misconceptions in a math tutoring context. Here is the prompt that was used:

Interactive Tutoring Prompt

I’d love you to tutor me on this following math problem, but don’t give me the answer. You can
ask questions and nudge me in the right direction. I want to make sure I understand it. Here is the
problem below. <Problem>




Evaluating Large Language Models for Math Tutoring 7

The problems were taken directly from the Apprentice Tutors and entered into ChatGPT. The
evaluators interacted with the model as it guided them through problem-solving, responding to
ChatGPT’s hints and prompts as they progressed. After each session, they logged a link to the chat
history, the final answers provided by ChatGPT, and whether the responses matched the correct
answers generated by the Apprentice Tutors. An example of this recording is shown in part B of
Figure

After collecting all responses, two independent reviewers assessed the interactions to answer the
following questions about each tutoring dialogue:

— Quality: Do the steps represent a high-quality tutoring interaction?
— Correctness: Were all the LLM responses in the dialogue correct?

To answer the first question and classify response quality, each dialogue was evaluated with
respect to the structured rubric shown in Table Il Each criterion was scored on a scale from 1
to 4. The rubric was designed to measure several key aspects of tutoring quality. Specifically, it
evaluated (A) the correctness of explanations, (B) the depth of scaffolding, and (C) the alignment
with instructional best practices. This structured approach aimed to reflect established learning
science principles. We summed the scores across all criteria. If the total score was 10 or below, the
response was categorized as “No” (not good quality); if the score was above 10, it was categorized
as “Yes” (good quality). Once the scores were converted into Yes/No label, we measured inter-

Low High
Criterion 1 (Poor) 2 (Fair) 3 (Good) 4 (Excellent)
Clarity of Explana- Explanations are Explanations are Explanations are Explanations are
tion frequently unclear, sometimes unclear generally clear, consistently clear,
leading to student or overly complex. with occasional logical, and easy to
frustration. confusion. understand.

Feedback

Feedback is rare or
unhelpful, lacking
specificity.

Feedback is pro-
vided, but is
sometimes vague or
untimely.

Feedback is gener-
ally constructive,
specific, and timely.

Feedback is consis-
tently constructive,
specific, timely, and
enhances student
understanding.

Scaffolded Support

The tutor provides

Support is in-

Support is generally

Support is perfectly

too little or too consistent, with well-matched to calibrated, with

much support, hin- occasional mis- the student’s needs, scaffolding grad-

dering learning. matches to  the with appropriate ually reduced as

student’s needs. scaffolding. the student gains

confidence.

Problem-Solving Problem-solving Some strategies Effective problem- The tutor effec-
Strategies strategies are not are mentioned, but solving strategies tively models and
discussed or mod- with limited discus- are discussed and teaches problem-

eled. sion or modeling. modeled. solving  strategies,

encouraging  inde-
pendent thinking.

Encouragement and
Reinforcement

The tutor provides
little to no encour-
agement, leading to
a negative learning
atmosphere.

Encouragement s
sporadic, sometimes
failing to motivate
the student.

The tutor provides
positive  reinforce-
ment, generally
maintaining a sup-
portive atmosphere.

The tutor consis-
tently  encourages
and motivates the
student, fostering
a highly positive
learning environ-
ment.

Table 1. Rubric for evaluating the quality of interactive tutoring dialogues in terms of five criteria.




8 Gupta et al.

Table 2. The tutor-based LLM evaluation results, which only assessed the final answer.

Model # Problem Types # Problems # Correct Accuracy
GPT-3.5 Turbo 22 110 85 77.3%
GPT-4 22 110 83 74.5%
GPT-40 22 110 107 97.3%
ol-mini 22 110 101 91.8%
ol-preview 22 110 94 85.5%
Overall Avg. 22 110 94 85.5%

rater reliability using Cohen’s Kappa [18] to assess agreement between reviewers and confirm the
robustness of our classifications.

To answer the second question and assess response correctness, each reviewer also indepen-
dently assessed whether all the LLM generated content was correct. These evaluations consisted of
considering each LLM response from the dialogue, and noting any mistakes or errors. If there were
any errors, then the dialogue was coded as incorrect, otherwise it was recorded as correct. Similar to
question 1, we measured inter-rater reliability of the two evaluations using Cohen’s Kappa. We also
conducted a thematic analysis [3] of the LLM responses to identifying recurring patterns in tutoring
interactions. The goal was to identify and categorize common patterns, counting their frequency
and noting whether they corresponded to positive or negative tutoring behaviors.

4 Results and Analysis

We present the results of the two evaluation methods used to assess the performance of LLMs in
math tutoring contexts. We first present the results from our tutor-based evaluation method and
then the results from evaluators interactively prompting the LLMs as if they were students.

4.1 Tutor-Based LLM Evaluation Results

Table 2] summarizes the results from the tutor-based evaluation. The apprentice tutors had 22
problem types and we sampled 5 problems of each type to produce a test set that contained 110
problem and answer pairs.

We identified twenty-five instances (6.3% of total responses) where the second LLM marked an-
swers incorrectly. From our observations, the second LLM would incorrectly mark the answer when
comparing the tutor-generated response to the LLM-generated response for the following reasons:
(1) a mismatch in the operational order (e.g., (3 +6) x 2 vs. 3+ (6 x 2)), (2) differences in sim-
plification (e.g., % vs. 0.5), and (3) differences in operator context (e.g., multiplication represented
by “x” vs. “¥7).

4.2 Interactive Prompting-Based LLM Evaluation

The evaluators prompted each of the five models to provide tutoring support on the same set of 30
problems, resulting in a total of 150 LLM dialogues. The two reviewers independently analyzed each
dialogue to classify whether it was high quality (using rubric from Table and fully correct. We also
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Table 3. Assessments of LLM tutoring interaction quality and accuracy. The columns show final answer
accuracy as well as the percentage of LLM dialogues that were classified as high quality and fully correct,
as indicated by reviewers R1 and R2. The number of problems in each case is noted in parentheses.

Model # Problems Final Accuracy % High Quality % Fully Correct
R1 R2 R1 R2

GPT 3.5 Turbo 30 90.0% (27) 90.0% (27) 90.0% (27) 46.7% (14) 53.3% (16
GPT 4 30 83.3% (25) 93.3% (28) 93.3% (28) 43.3% (13) 50.0% (15
GPT 4o 30 93.3% (28) 90.0% (27) 90.0% (27) 70.0% (21) 80.0% (24
ol mini 30 86.7% (26) 86.7% (26) 80.0% (24) 56.7% (17) 43.3% (13
ol preview 30 90.0% (27) 90.0% (27) 96.7% (29) 73.3% (22) 50.0% (15
Overall Avg. 30 88.6% 90.0% 56.6%

evaluated the final answer accuracy from each dialogue by comparing it to the tutor solution. Table
shows the results of these assessments, breaking out the accuracy of final LLM answers alongside
reviewer assessments of the quality and correctness of the LLM dialogues. We calculated Cohen’s
Kappa (k) to evaluate the reviewer agreement for both the quality and correctness ratings. This
score, which ranges from 0 to 1, represents agreement after correcting for chance. A score greater
than 0.7 is typically viewed as strong agreement. For the quality ratings, Cohen’s Kquatity =~ 0.85,
and for the assessment of whether the LLM dialogues were entirely correct, Cohen’s Kcorrectness =
0.82. These scores indicate very strong agreement between the independent reviewers.

Finally, the reviewers evaluated each model’s performance, documenting key behavioral pat-
terns and noting any common issues. Table [] summarizes these findings, classifying observations
as positive or negative based on their potential impact on learners. This analysis highlights the
strengths and weaknesses of each model’s tutoring approach, offering insight into their effectiveness
in guiding students through problem-solving.

5 Discussion

Both of our evaluation methods suggest that the LLMs show reasonable final answer accuracy. Our
tutor-based evaluation showed that GPT 4o had the highest final-answer accuracy at 97.3%. In
the interactive prompting-based evaluation, we found that GPT-4o0 also got the highest accuracy
at 93.3%. Although these accuracies seem reasonable, it still means that these models will generate
incorrect final answers for about 1 in 18 problems. We were also surprised to find that GPT-4
performed the worst and that model rankings changed based on the evaluation.

Newer models often performed worse than older ones, despite expected improvements. This
suggests that LLM performance can no longer be expected to improve with each new model release
and that there are continued gaps in how LLMs process multi-step math questions. In terms of final
answer accuracy, we also observed that the interactive prompt-based evaluation results were higher
than those from the tutor-based evaluation, probably because human testers engaged in multi-turn
interactions, allowing LLMs to refine responses. In contrast, the tutor-based evaluation provided
only a single prompt, requiring the model to solve problems correctly in one step.

During our interactive prompting-based evaluation, we found that LLMs generate high-quality
tutoring support most of the time. Although GPT-4 had the lowest final answer accuracy, it scored
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Table 4. Summary of key observations from the interactive tutoring evaluation.

Observation Occurrences Sentiment
The final answer was correct, even though there were incurabilities in the 6 Negative
sub-steps.

Even though the prompt was not to share an answer, it was possible to obtain 4 Negative
the answer by manipulating responses (via yes/no questions).

For topics like factoring, there was an overemphasis on teaching basics (e.g., 4 Negative
multiplying) instead of demonstrating specific methods (e.g., “slip and slide”).

LLM over-indexes on ensuring the final answer is correct rather than 3 Negative
emphasizing the student’s step-by-step skill acquisition.

LLM occasionally produces an incorrect conclusion and refuses to accept a 4 Negative
correct student answer.

Sub-steps are sometimes flagged as incorrect even though they are actually 3 Negative
correct.

Difficult math notation (e.g., quadratic expressions) can be challenging to 2 Negative
input from a standard keyboard.

LLM is flexible about answer formats, accepting multiple notational styles. 3 Positive
LLM excels at generating hints and extra worked examples to support 2 Positive
instruction.

LLM provides encouraging feedback and positive reinforcement, which could 7 Positive
benefit student well-being.

LLM nudges students to answer queries in sequence when they attempt to 2 Positive
skip ahead.

near the top in terms of quality, with 93.3% of its chat dialogues being classified as having high
pedagogical quality. Although the LLMs achieved reasonable final answer accuracies, we found
that when considering their entire tutoring dialogues they often would make mistakes. Along this
dimension, GPT-40 achieved the best performance, with 75% of its dialogues being classified as fully
correct (averaging across the two reviewers). Across all five of the LLMs only 56.6% of the tutor
dialogues were entirely correct. This suggests that nearly 1 in 2 interactive LLM tutoring sessions
with a student will likely contain errors. These results suggest that LLMs error rates are likely much
higher would be suggested by benchmarks that only evaluate them in terms of the final answer.
This raises concerns about their use as standalone tutors, as less-than-perfect accuracy can harm
learners. If one in two dialogues contains errors, students may lose trust in the tutor and, worse,
develop misconceptions that hinder future learning. Our results also suggest that future evaluations
must consider the correctness of the entire tutoring dialogue, not just the final answer accuracy.

Unlike intelligent tutors, which are often developed through meticulous cognitive task analy-
sis [I7] to ensure that sub-steps are carefully designed for effective learning, LLMs tend to prioritize
arriving at the final answer rather than ensuring students understand the intermediate steps. For
example, in factoring problems, the LLMs frequently provided overly general guidance, such as basic
multiplication rules, instead of focusing on specific strategies such as the “slip-and-slide” method
explicitly requested in the task. Although the question will be marked right in the evaluation, not
using the specified method reduces the overall quality of the tutoring guidance.

Table [f] summarizes reviewer observations of tutoring interactions. Reviewers noted that the
LLMs sometimes refused to accept correct answers, miscalculated sub-steps, or overemphasized



Evaluating Large Language Models for Math Tutoring 11

fundamentals at the expense of specialized techniques. However, the LLMs also provided flexible
response formats, detailed hints, and encouraging feedback. Manual review of chat logs revealed
inconsistencies in how LLMs handled intermediate steps. While they often produced correct final
answers, sub-steps were occasionally miscalculated or erroneously flagged as incorrect (8 instances,
as shown in Table . These errors fell into three categories: (1) simplified vs. unsimplified answers
(e.g., 2 vs. V/4), (2) differences in term order (e.g., v/3 + V4 vs. V4 + v/3), and (3) formatting
mismatches (e.g., missing required LaTeX tags). These issues highlight inconsistencies in how LLMs
evaluate semantic equivalence.

Though LLMs may be insufficient compared to ITS when tutoring, recent work demonstrates
how LLMs could support ITS in hint generation. By leveraging the expert model of ITS, LLMs
can generate correctness feedback personalized to student responses without needing the LLM to
perform any mathematical calculations [23]. If integrated with other educational technologies, they
could offer several potential benefits. Their ability to generate hints, provide alternative explana-
tions, and accommodate various answer formats makes them flexible and adaptive. However, our
finding that LLMs sometimes mark correct answers as incorrect—even when provided with the
solutions—suggest that LLMs integrations will need to be carefully evaluated before deployment.

Additionally, their use of positive reinforcement, such as motivational nudges and encouraging
feedback, could fosters an engaging learning environment, as long as all learners receive equal
encouragement. For example, several chat logs included statements like, “Way to go, you are close
to the answer!” or “That’s not right, but let’s keep trying.” These reinforcements might help motivate
learners to persist and promote sustained engagement with educational tools. This approach aligns
with adult learners’ need for constructive feedback and encouragement [7]. Future research should
systematically evaluate the motivational potential of LLMs interactions and whether they translate
into improved learning outcomes.

6 Limitations and Future Work

One limitation of our LLM evaluation methods is that they did not directly evaluate against actual
students. We chose our approach because we knew that LLMs have reliability issues and we did not
want to cause harm to students by giving them incorrect tutoring guidance during our experiments.
Although our approach provides a means of safe, controlled evaluation, it may not fully capture
the unique ways in which real students would engage with LLM tutors. A future iteration of this
work could involve deploying the system in real-world educational settings and analyzing chat logs
generated from authentic student interactions to gain a more comprehensive understanding of LLM
performance. However, our work suggests that LLMs make mistakes in just over half of their student
tutoring dialogues, so future research must account for the risks to students that this poses.
Furthermore, this study was conducted using an earlier version of the Apprentice Tutors plat-
form, which focused exclusively on math-related questions. The Apprentice Tutors platform has
since been expanded to include other types of questions, such as those related to nursing education.
Future research could explore how LLMs, including ChatGPT, perform in this and other domains,
extending the scope of evaluation to understand their domain-specific adaptability and effectiveness.
Finally, another limitation is that the analysis presented was restricted to a set of LLMs within
the ChatGPT family. With the rapid development of new LLMs, such as Google’s Gemini, An-
thropic’s Claude and several open-source LLMs, there is an opportunity to expand this study to
evaluate these emerging models too. Comparing performance across a broader range of LLMs would
provide a more holistic view of their strengths and weaknesses in educational contexts. Lastly, this
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study used the publicly available versions of the ChatGPT models accessible online. In practice,
commercial production environments often deploy models that are fine-tuned to specific domains
or tasks. Evaluating a custom-tuned LLM tailored to specific educational needs could offer a more
accurate representation of how these tools would perform in real-world applications.

7 Conclusion

In this study, we evaluated the ability of various LLMs to solve college algebra problems and to
interactively provide step-by-step tutor guidance. We evaluated multiple models, including GPT-3.5
Turbo, GPT-4, GPT-40, ol Mini and ol Preview, identifying both their strengths and limitations.
The performance results presented in this study, though commendable, are significantly lower than
the 100% accuracy achieved by traditional intelligent tutors on the same set of problems. While
we saw an overall final accuracy of 85.5% with the automated tutor-based evaluation and 88.6%
with our interactive prompting-based evaluation, our analysis of the entire LLM tutoring dialogues
showed that only 56.6% were entirely correct. This discrepancy suggests a core limitation of using
LLMs as tutors: while they often generate correct final answers, ensuring the pedagogical soundness
and accuracy of intermediate steps remains challenging.

Despite these limitations, LLMs exhibit several capabilities that have the potential to improve
learning outcomes. Their flexibility in accepting diverse answer formats, the ability to generate hints
and alternative problem explanations, and the use of positive reinforcement, such as motivational
nudges, could help foster a more supportive and engaging learning environment. However, there are
risks associated with the deployment of LLMs in educational settings. For example, biases within the
models may lead to inflexibility in pedagogical approaches, such as internal biases that favor some
methods of solving problems over others. Furthermore, inaccuracies in responses—with around one
in two dialogues containing errors—can undermine the trust of students in the guidance of the tutor
and reduce their confidence in the system. To address these challenges, future work might explore
how to leverage their independent capabilities, such as problem generation, hint generation, and
positive reinforcement. By balancing these strengths with strategies to manage and mitigate their
limitations, LLMs could effectively supplement other educational technologies, such as intelligent
tutoring systems.
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