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ABSTRACT

Intelligent tutors have shown success in delivering a personalized
and adaptive learning experience. However, there exist challenges
regarding the granularity of knowledge in existing frameworks
and the resulting instructions they can provide. To address these
issues, we propose HTN-based tutors, a new intelligent tutoring
framework that represents expert models using Hierarchical Task
Networks (HTNs). Like other tutoring frameworks, it allows flexible
encoding of different problem-solving strategies while providing
the additional benefit of a hierarchical knowledge organization. We
leverage the latter to create tutors that can adapt the granularity
of their scaffolding. This organization also aligns well with the
compositional nature of skills.
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1 INTRODUCTION

Intelligent Tutoring Systems (ITSs) are computer programs that
utilize AI techniques to provide personalized and adaptive learning
[17]. Several randomized controlled trials have demonstrated their
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effectiveness at improving student learning gains [7, 19]. Frame-
works for intelligent tutoring include constraint-based tutoring,
which uses constraint-based modeling (CBM) to specify domain
principles that every correct solution must follow [18], and example-
tracing tutoring, which uses generalized traces of problem-solving
behavior [3]. One of the more well-known frameworks is rule-based
tutoring, which uses production rules to represent the cognitive
model, where every rule is tied to a student skill [2]. Some examples
of rule-based tutors adopted at scale are Cognitive Tutor/MATHia
[6, 21], OATutor [4], ASSISTments [13] and Apprentice Tutor [1].

One line of research concerning intelligent tutors is the granular-
ity of instructions. Granularity, in the context of intelligent tutors,
refers to the amount of reasoning that is handled by the student
internally on each step [24]. Low granularity means that the system
provides detailed, scaffolded steps to help guide the learner. In con-
trast, high granularity means that the system provides much less
support—often just a single input box for the learner to enter the
final answer. Research suggests that scaffolding should ideally be
faded, shifting from low granularity to high granularity and reduc-
ing support as learners gain proficiency [15, 20]. However, limited
research has explored ITS that dynamically changes the granularity
of steps based on student skill level, functionality that we refer
to as adaptive scaffolding. In most intelligent tutors, granularity is
static. It is a feature of the user interface rather than encoded in
the cognitive model, preventing adaption based on the learner’s
skill level. This gap necessitates formalizing a new expert model for
intelligent tutors that can represent knowledge at different levels
of granularity and better support adaptive scaffolding.

Across many existing systems, each skill the user is expected
to acquire is represented independently and discretely [25]. In the
case of rule-based tutors, skills are represented as distinct produc-
tion rules that activate when the rule’s conditions are met. We
argue that the representation of skills needs to better capture their
compositional and hierarchical nature [11].

To address the aforementioned challenges, we present a new
framework using Hierarchical Task Networks (HTNs) that we refer
to as HTN-based tutoring. HTNs are used in automated planning due
to their human-like decomposition [16]. We leverage this property
of HTNs to encode different problem-solving strategies informed
by the student’s knowledge level. Each action is tied to meaningful
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abstractions representing knowledge components. HTN-based tu-
tors capture a key characteristic of skills, they are built upon one
another in compositional hierarchies.

Our contribution is twofold. First, we propose a cognitive model-
ing framework that can deliver adaptive scaffolding, aligning with
the learner’s progress to reduce cognitive load for novices and chal-
lenge advanced learners. Second, by modeling the compositional
nature of skill development, HTN-based tutors offer a more realistic
and practical framework for learning complex subjects.

2 BACKGROUND

In intelligent tutors, granularity is typically a characteristic of the
user interface and not the cognitive model; granularity reflects the
level of reasoning participants must engage in between interaction
points [24]. A larger grain size implies more reasoning with each
interaction. Systems have been constructed with varying levels
of granularity. Answer-based systems have the largest possible
granularity, presenting learners with a problem and asking them
to input the final answer without giving feedback to learners on
intermediate steps. This requires the learner to do extensive mental
reasoning for each response. In contrast, step-based and substep-
based systems offer more frequent, detailed guidance. That is, they
break problems down into multiple steps that the learner needs to
perform, reducing the amount of independent reasoning required
before each response. Step-based tutoring systems [23] aim to have
users enter the steps they would naturally write down when solving
a problem while showing their work. In contrast, substep-based
tutors give scaffolding and feedback at a level of detail that is even
finer than the steps students would typically exhibit when showing
their work.

Hierarchical task networks (HTN) are popular for providing a
robust framework for automated planning, an area of artificial in-
telligence research [10]. HTNs are used in robotics, video games,
and military simulations, among many other applications. Seminal
systems such as SHOP and SHOP2 [16] exemplify the effectiveness
of HTNs in decomposing abstract tasks into concrete, manageable
tasks through the use of Methods and Operators. Their hierarchical
approach to task decomposition has a natural alignment with hu-
man cognitive skill organization, making it an intuitive framework
for encoding task knowledge. This alignment facilitates a deeper
understanding of planning as a cognitive function. While its poten-
tial as a cognitive modeling tool is evident [12], research on its use
in intelligent tutors, and in the learning sciences more generally, is
limited. Our proposed system builds upon the domain-independent
framework of HTNs to create expert models for tutoring systems.

3 HTN-BASED TUTORS

In this section, we will outline the components of our proposed
HTN-based tutoring framework. We will describe the state, the
expert model, and how both support model tracing and tutoring.

3.1 State

The system utilizes a short-term working memory that contains an
up-to-date description of the system’s state. The working memory
represents the state using facts, which are logical predicates that
describe different elements in the tutor and how they relate. An
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example fact describing the value stored in the “addFraction” field
might be:

Fact(field='addFraction', value='1/2+1/4")

Facts encode the details of the problem, its expected scaffolding, and
the user’s expertise for each skill as calculated through knowledge
tracing [8]. The knowledge of which step should be scaffolded can
be dynamically inferred based on a user’s skill levels using Axioms.
Axioms are described in greater detail in the following section.

3.2 Expert Model

The expert model stores problem-solving strategies, including tasks,
operators, methods, and axioms.

3.2.1 Tasks. A task represents an activity to perform.! Tasks can
be performed using an Operator or a Method. Each task has a
definition associated with it, which we call the task head. The task
head is essentially the name or identifier of the task. The task head
corresponds to heads that appears in Operator or Method. In order
to start problem-solving, a task has to be instantiated.

3.22 Operator. Operators represent primitive behaviors. Each
operator has a head, preconditions, and effects. The preconditions
are a partial description of a state that describes when the operator
can be applied and The effects describe the actions to be take when
applied. These usually result in some change to the state (e.g., up-
dating a tutor field with a particular value). Operators are similar
in many respects to the production rules in rule-based models. The
key difference is that operators are only considered in the context
of the target task that they are known to perform, as specified by
their head, whereas all productions are considered in every state.

3.2.3 Method. Methods represent non-primitive behaviors. Like
operators, each method has a head that defines the task it performs
and preconditions that describe when it is applicable. However,
unlike operators, methods have subtask decompositions instead of
effects. There can exist multiple methods with the same head to
describe different ways of decomposing a given task under different
conditions. This allows the encoding of multiple strategies for per-
forming a task. The method is essentially a higher-level abstraction
that break down a task into simpler subtasks.

3.24 Axiom. Axioms are used to infer facts that are not explicitly
asserted in the current state. Each axiom has a head and precondi-
tions. However, unlike methods and operators, the head refers to a
new fact that can be inferred when its preconditions are satisfied.

3.3 Model Tracing with HTNs

Model tracing is a technique for inferring a student’s mental op-
erations given their observed behavior on a problem [5], enabling
real-time and contextual feedback on the student’s inferred state.
To support model tracing with HTN-based cognitive models, all
problems start with a single higher-level task that is linked to the
problem (e.g., reduce the logarithmic expression). The HTN model
tracing system searches for a way to recursively decompose this
task until it grounds out into operators that describe actions to
be taken in the tutor. For each task, the system retrieves all the

'Here we use the HTN definition of a task [16], which is different from typical tutoring
system definition [23].
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Figure 1: A representation of fraction addition problem-solving knowledge in rule (left) and HTN formats (right), showing
methods (ellipse) and operators (rectangle) for head tasks, with lettered callouts indicating equivalent steps in both frameworks.

methods or operators that can achieve it and checks to see if their
preconditions are satisfied. If any of the methods and/or operators
are applicable, then it selects one (this choice is represented as
an OR decomposition in Figure 2). If a method is selected, then it
decomposes the current task into a conjunction of subtasks, each
of which the system tries to satisfy via recursive decomposition
(the conjunction of subtasks to be satisfied is represented as an
AND decomposition in Figure 2). If an operator is selected, then
it waits for the student to take action corresponding to the effects
described by the operator. If the expected effects are not observed,
then the system backtracks to find an alternative decomposition
that matches the observed student action. When no decomposition
matches, the system identifies the student action as incorrect. How-
ever, if the student takes an expected action, then model tracing
continues and the system moves on to the next subtask that needs
to be decomposed.

In each state, the HTN-based system only considers methods that
satisfy the current task/subtask. As a result, it evaluates fewer Meth-
ods/Operators than rule-based tutors, which evaluate all production
rules in every state. Figure 1 compares a simplified rule-based ex-
pert model, comparable to what is used in a Cognitive Tutor [6] (on
the left) with a simplified HTN-based expert model (on the right).

4 EXAMPLE

Having described the framework of HTN-based tutors, it is worth-
while to showcase an example in the context of a tutor. Figure 2
shows a tutor for reducing logarithmic expression. The tutor (right)
displays different granularity levels based on the user’s estimated
knowledge of each component (e.g., as estimated via knowledge
tracing [8]). A student who is highly proficient (marked by the
green progress bar) sees an interface similar to an answer-based
tutor. A student with intermediate skills (yellow progress bar) sees
an interface similar to step-based, while for a novice, the interface
resembles a sub-step-based tutor, outlining even the steps that are
more traditionally done mentally.
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Figure 2 also shows the expected model tracing path correspond-
ing to each user (left). The numbering at the bottom of nodes repre-
sents the ordering sequence of their respective AND branches. Each
path is marked with colors matching their progression. The green
yields no scaffolding, while yellow and red have provide progres-
sively more scaffolding in each case. The plus button on the right
of the input field expands the scaffolding manually if the student
would like more support. Red implies scaffolding is available, while
grey implies scaffolding has already been expanded for that step.

5 DISCUSSION
5.1 Adaptive Scaffolding

In intelligent tutors, the focus is typically on providing contextual-
ized hints and personalized practice sequences rather than adaptive
scaffolding [4, 6]. These systems utilize two primary mechanisms:
the outer loop and the inner loop [23]. The outer loop selects prob-
lems that learners have not yet mastered [22], focusing their prac-
tice where it is needed rather than on skills they already know. The
inner loop offers hints and immediate feedback directly through the
tutor interface, tailoring to the specific context. Sometimes students
with low skills do not have the metacognition to implement the
hints and explanations they are given [9]. They require explicit
problem-solving instruction and modeling of their problem-solving
strategies to make progress. Our cognitive models enable alterna-
tive methods to administer adaptive scaffolding.

5.1.1 Granularity. Granularity is explicitly represented in HTN’s
task hierarchy, where higher-level tasks are less granular and lower-
level tasks represent more granularity. This allows multiple subtask
lists to be authored, catering to learners of varying skill levels, as
seen in figure 2. This approach not only addresses cognitive load but
also enhances learning by dynamically adjusting the scaffolding
based on the HTN model to meet the learner’s evolving needs.
Adaptive granularity enables the tutor to reduce the degrees of
freedom [26] for problem-solving while retaining higher-level task
context by means of tailored instructions. Effective scaffolding
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Figure 2: An HTN-based tutor implementation for solving logarithmic expressions is shown. On the left, various paths for
model tracing correspond to different skill levels: green for high-skill, yellow for moderate, and red for low-skill students.

should gradually fade as learners gain proficiency [15], allowing
them to become more independent in their problem-solving. Our
system progressively reduces the level of scaffolding provided. As
learners advance, the tutor transitions to an answer-based format,
fostering greater learner autonomy and reinforcing mastery. By
giving students practice in a format that more closely resembles
the format of problems on exams and tests, we hypothesize our
tutors will yield better performance gains under testing conditions
than typically seen with ITS [14].

5.1.2 Strategy Recognition. It is valuable for students to receive
feedback on the strategies they use, as this enables them to meta-
cognitively assess their problem-solving. Due to strategy being
encoded directly in HTN methods, our model tracing system can
identify the approach taken by students and provide feedback on
their strategic choices. This should help improve student’s current
understanding and enhance their outcomes [26].

5.2 Representation Power

Skills are compositional in nature [11], serving as building blocks
for higher-level skills. In contrast to production rule engines, which
process rules individually without a hierarchical knowledge struc-
ture, our HTN-based approach organizes knowledge hierarchically,
reflecting the natural organization of skills. The flexible nature of
the HTN-based tutor allows for the reusability of methods and oper-
ators while not compromising the hierarchy of skills. Moreover, the
tasks in the HTN do not have to be strictly sequential and can have
interleaved dependency. This makes it easier to encode complex
problems where tasks do not follow a linear sequence of steps (e.g.,
where the subtasks can be performed in any order).

6 LIMITATION & FUTURE WORK

While HTN-based tutors show promise, they have yet to be tested
and integrated within a large-scale deployment. Integrating our
cognitive modeling approach within a platform to support standard
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inner and outer loop features would allow for a more holistic evalu-
ation. We will investigate the following questions: 1) Does adaptive
scaffolding, through adjusting granularity, improve student learn-
ing? 2) What is the optimal strategy for adaptive granularity? To
address the first question, we will compare the performance of
intelligent tutors with static granularity to HTN-based tutors with
adaptive granularity through controlled experiments. Students will
be randomly assigned to one of three groups: an HTN-based tutor
with static scaffolding, one with adaptive scaffolding, or a control
group without tutoring. We will evaluate effectiveness using learn-
ing gains measured by pre- and post-tests. For the second question,
we will use a similar design with two treatment groups: one where
granularity follows a U-shaped curve (starting large, decreasing,
then increasing) and another where granularity follows a sigmoid
curve (starting small and increasing). Outcomes will be assessed
using pre- and post-tests.

7 CONCLUSION

To address the limitations of existing tutoring systems, we present
an alternative framework for tutor cognitive models that uses HTNs.
HTN-based tutors provide better personalization by enabling adap-
tive scaffolding functionalities that have thus far been under ex-
plored. The hierarchical nature of the system enables reusability of
skills across tutors while maintaining their hierarchical association.
It allows the composition of skills to formulate new higher-level
skills, enabling better knowledge compilation [11]. The human-like
encoding of skills opens the opportunity to incorporate several
features that will help us deliver a better experience for learners.

8 ACKNOWLEDGEMENT

This project is supported by National Science Foundation under
Grant No. 2247790 and Grant No. 2112532. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.



HTN-Based Tutors: A New Intelligent Tutoring Framework Based on Hierarchical Task Networks L@S °24, July 18-20, 2024, Atlanta, GA, USA

REFERENCES minimally invasive research on human learning and teaching. International

[1] AI-ALOE. 2024. Technologies. https://aialoe.org/technologies. Accessed: April Journal afArtlﬁctalIntellzgence in Education 24 (2914)’ 470-497. .
15, 2024. [14] James A Kulik and John D Fletcher. 2016. Effectiveness of intelligent tutoring

[2] Vincent Aleven. 2010. Rule-based cognitive modeling for intelligent tutoring systems: a meta-analytic review. Review of educational research 86, 1 (2016),
systems. In Advances in intelligent tutoring systems. Springer, 33-62. 42-78. . . . . .

[3] Vincent Aleven, Bruce M McLaren, Jonathan Sewall, Martin Van Velsen, Octav [15] Katherine L McNeill, David J Lizotte, Joseph Krajcik, and Ronald W Marx. 2006.
Popescu, Sandra Demi, Michael Ringenberg, and Kenneth R Koedinger. 2016. Supporting students’ construction of scientific explanations by fading scaffolds in
Example-tracing tutors: Intelligent tutor development for non-programmers. instructional materie}ls. The journal of the ;earning Sciences 1‘5,‘2 (2006), 153-191.
International Journal of Artificial Intelligence in Education 26 (2016), 224-269. [16] Dana S Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, ] William Murdock, Dan

[4] Ioannis Anastasopoulos, Shreya Sheel, Zachary Pardos, and Shreya Bhandari. Wuf apd fusup Yaman. 2003. SHOP2: An HTN planning system. Journal of
2023. Introducing an open-source adaptive tutoring system to accelerate learn- artlﬁc'lal intelligence research 20 '(2003)’ 379T404' . .
ing sciences experimentation. In Proceedings of the Tenth ACM Conference on [17] Hyacinth S Nwana. 1990. Intelligent tutoring systems: an overview. Artificial
Learning@ Scale. 251-253. Intelligence Review 4, 4 (1990), 251-277.

[5] John R Anderson, C Franklin Boyle, Albert T Corbett, and Matthew W Lewis. [18] Stellan Ohlsson. 2016. Constraint-based modeling: from cognitive theory to
1990. Cognitive modeling and intelligent tutoring, (1990). computer tutoring-and back again. International Journal of Artificial Intelligence

[6] John R Anderson, Albert T Corbett, Kenneth R Koedinger, and Ray Pelletier. 1995. in Education 26 (2016), 457.7473' . .

Cognitive tutors: Lessons learned. The journal of the learning sciences 4, 2 (1995), (19] Jf)hn F Pane, Beth ‘Ann Griffin, Daniel F McCaffrey, a'nd Rita Kararp. 2014. EE?C'
167-207. tiveness of cognitive tutor algebra I at scale. Educational Evaluation and Policy

[7] Carole R Beal, Rena Walles, Ivon Arroyo, and Beverly P Woolf. 2007. On-line Analysis 36, 2 (2014), 127-144. .
tutoring for math achievement testing: A controlled evaluation. Journal of [20] Sadhana Puntambekar and Roland Hubscher. 2005. Tools for scaffolding students
Interactive Online Learning 6, 1 (2007), 43-55. in a complex learning environment: What have we gained and what have we

[8] Albert T Corbett and John R Anderson. 1994. Knowledge tracing: Modeling the missed? Educational psychologist 403 1(2005), 1_12" .
acquisition of procedural knowledge. User modeling and user-adapted interaction (1] Steven Ritter and Stephen Fancsali. 2016. MATHia X: The Next Generation
4 (1994), 253-278. Cognitive Tutor.. In EDM. ERIC, 624-625.

[22] Steve Ritter, Michael Yudelson, Stephen E Fancsali, and Susan R Berman. 2016.

[9] Annalisa Cusi, Agnese Ilaria Telloni, et al. 2020. Re-design of digital tasks: the - ! )
role of automatic and expert scaffolding at university level. In Proceedings of the How mastery learm_ng works at scale. In Proceedings of the Third (2016) ACM
10th ERME Topic Conference" Mathematics Education in the Digital Age"(MEDA). Conference on Learning@ Scale. 71-79. )

Johannes Kepler University, 159-166. [23] Kurt VanLehn. 2006. The behavior of tutoring systems. International journal of

[10] Kutluhan Erol, James A Hendler, and Dana S Nau. 1994. Semantics for hierarchical artificial intelligence in educattort 16,3 (2906)’ 227-265. L. .
task-network planning. University of Maryland College Park. Kurt YanLehn. 2011. The relative .effectlveness of humgn tutoring, mtglhgent
[11] Kurt W Fischer. 1980. A theory of cognitive development: The control and tutoring systems, and other tutoring systems. Educational psychologist 46, 4
construction of hierarchies of skills. Psychological review 87, 6 (1980), 477. (2011), 197-221. i . . )
[12] Bradley Hayes and Brian Scassellati. 2016. Autonomously constructing hierar- Kurt Vanlehn and Zhendong N1u 2001. Baye51an StL.‘dent modeling, usgr {nf
chical task networks for planning and human-robot collaboration. In 2016 IEEE terfacgs andA feedbaclf: A sensitivity analysis. International Journal of Artificial
International Conference on Robotics and Automation (ICRA). IEEE, 5469-5476. Intel'lzgence in Education 12, 2 (2001), 154,7184' L.
[13] Neil T Heffernan and Cristina Lindquist Heffernan. 2014. The ASSISTments [26] David WOOdj Jerome S Brune}", and Gail Ross. 1976'. The role of tutoring in
ecosystem: Building a platform that brings scientists and teachers together for problem solving. Journal of child psychology and psychiatry 17, 2 (1976), 89-100.

[24

[25

495


https://aialoe.org/technologies

	Abstract
	1 Introduction
	2 Background
	3 HTN-Based Tutors
	3.1 State
	3.2 Expert Model
	3.3 Model Tracing with HTNs

	4 Example
	5 Discussion
	5.1 Adaptive Scaffolding
	5.2 Representation Power

	6 Limitation & Future Work
	7 Conclusion
	8 Acknowledgement
	References



